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Quadratic algebra as a ‘hidden’ symmetry of the 
Hartmann potential 

Ya 1 Granovskii, A S Zhedanov and  1 M Lutzenko 
Physics Department, Danetrk State University, Donetzk 340055, USSR 

Received 24 September 1990 

Abstract. It is shown that operators, commuting with the Hamiltonian aC the Hartmann 
potential form the quadratic Hahn algebra QH(3). The stiucture of this algebra and its 
finite-dimensional representations are desrribcd. An analysis of these representations is 
applied to obtain all the relevant physical results: energy spectrum, degree of degeneration 
and overlap functions. 

1. Introduction 

An ‘accidental’ degeneration of the energy levels in the Coulomb problem is indeed 
a very ‘thin’ property: almost any additional terms which have been added to this 
potential destroy the specific Coulomb O(4) symmetry and reduce it to the usual O(3) 
one. 

It is interesting, therefore, that the so-called Hartmann potential [ 11 

(iH = - a / r + p / r 2 s i n 2  0 (1 .1)  

does not fully destroy the ‘accidental’ symmetry. The spherical anisotropy of this 
potential is not a difficulty, but in fact the integrability of this problem is due to the 
Y ~ C G I I I C  angular ucperrucncc VI i n n  m i n .  

From this point of view this potential has been studied in [2-41, but the first 
indication ahout its symmetry can be found in [SI. 

A search for the symmetry of this potential has been carried out in [3]. The authors 
of [3] have shown that SU(2) algebra can  be used to describe the energy spectrum. 
However, SU(2) cannot be used to compute overlap matrix elements between wavefunc- 
tions in spherical and parabolic coordinate systems (both these systems allow the 
separation of variables). This computation has been fulfilled in [4]: overlap matrix 
elements turn out to be expressible in terms of the hypergeometric function 3Fz(l) .  
This function provides an  analytic continuation of Clebsh-Gordan coefficients (ccc) 
from integer values of their parameters to the domain of (arbitrary) real ones. These 
results indicate the existence of an auxiliary symmetry for the Hartmann potential, 
similar to the O(4) one for the Coulomb potential. 

However, in contrast to the case of the Coulomb potential only three independent 
integrals of motion exist for the Hartmann potential. This is an important problem as  
the corresponding finite-dimensional Lie algebra cannot be constructed. The authors 
of [3] have expressed an opinion that the corresponding symmetry algebra may be an  
infinite-dimensional one like the Kac-Moody algebra. 
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We will show that the symmetry of the Hartmann potential is actually described 
by quadratic algebra of some special type (we call i t  the Hahn algebra QH(3), see 
[ 6 ] ) .  This algebra allows one to realize the whole algebraic programme: to find the 
energy levels and their degeneration degree, overlap matrix coefficients, etc. 

2. The symmetry generators 

The Schrodinger equation for a particle in the Hartmann potential has the form 

H$ = ( p 2 / 2  - a/ r +  p /  r2 sin2 O ) $  = E$ 

It is possible to separate the variables in spherical coordinates: 

(a > O ,  p>O,  E < O ,  in = f i  = 1). ( 2 . 1 )  

$ ( r )  = R ( r ) F ( O )  exp(im9). ( 2 . 2 )  

Despite the appearance of an anisotropic term in the Hartmann potential the 
degeneration of energy levels is not fully destroyed as might be supposed a priori. 
Thus, an additional symmetry exists and one must find the operators commuting with 
H and construct from them the corresponding algebra. 

The operators commuting with H are known [ 3 ] .  One of these operators is obvious- 
it is the modified square of angular momentum: 

i2= ~ ~ + 2 ~ / s i n ‘  0. ( 2 . 3 )  

Also, a modified Ai exists: 

A,=[a,, i 2 /2 -a i - ]  

where [ ’ , ‘ 1  denotes the commutator. 
The third integral of motion is, of course, L, (due to azimuthal symmetry) but this 

operator also commutes with i’ and Ai and may be considered, rather, as a fixed 
parameter ( L z  = m). 

The other operators like L,, L,,, A,,  A, do not commute with the Hamiltonian. So 
the algebra similar to O(4) does not exist for the Hartmann potential. This property 
is obvious because of the anisotropy of U ” ( r ) .  

However, this is not a problem. We can construct the algebra by means of commuta- 
tion starting from only two operators: 

K,,= I? and K ,  = ( - 2 E ) - ” ’ A , .  (2.5) 

Direct computation yields 

[ K o , K , I = K ,  (2.6a) 

[ K O ,  K J = 2 ( K , , K t + K , K o )  ( 2 . 6 b )  

[ K, , K , ]  = 2 K i  +4K0 - G ( 2 . 6 ~ )  

where 

G = 2 ( m 2 + 2 p  - 1 - n 2 / 2 E )  (2.7) 

is the only parameter of algebra (2.6). 
I t  is seen that commutators of three operators K,,, K , ,  K2 have been closed in the 

frame of the quadratic algebra. This algebra is a special case of more general structures 
(see [6,7]). By quadratic algebra we mean the mathematical objects which have been 
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discovered by Sklyanin in 1983 [8]: the defining property of this algebra is that 
commutators of generators are expressed in terms of quadratic and linear combinations 
of generators. 

It is worth mentioning that the authors of [ 3 ]  have supposed that the operators 
K O ,  K , ,  [K,,  K , ] ,  [K,[K,,, K , ] ] ,  etc. could form an infinite-dimensional Lie algebra, 
but have not found an explicit form of this algebra. Our main statement is that the 
corresponding algebra is not only three-dimensional, hut also quadratic. 

L IIC viiry UIILCIC;IILX D ~ L W C C ~ I  LILC naiiiiiaiiri anu LUUIUI~U pruvirrm IS Lnc apprararrc~; 
of the term 2 0  in the constant C. So the algebra ( 2 . 6 )  is equally applicable to the very 
well-known case. However, the higher degree of degeneration in the Coulomb potential 
is really ‘accidental” and is due to the existence of auxiliary operators L,, L?, A,, A,. 
commuting with the Hamiltonian. This will be discussed below. 

TL^^^l_ . - l :P^ _^_^. L .......-. L. 1 .  .~.>n..~s.-.L L>.- .2 . .L .  .~ ._...._ ^^ 

3. The spectrum, etc. 

It is our purpose in this section to derive the main physical results for the Hartmann 
potential, proceeding only from representations of the Q H ( 3 )  algebra ( 2 . 6 ) .  

Let us diagonalize the operator K O :  

K d P  = A,,@,, ( 3 . i )  

( p  is a discrete variable with unit step). 

appendix): 
Operator K ,  is three diagonal on this basis (for details of calculations see the 

(3 .2)  K j $ ,  = ap+l$p+L + a,&, + b , b  

Combining (3.1) and ( 3 . 2 )  with commutation relations ( 2 . 6 )  one obtains 

.hp = P(P+ 1) ( 3 . 3 a )  

a ;  = ( p ’ - f 2 ) ( $ - p 2 ) / ( 4 p 2 -  1 )  ( 3 . 3 6 )  

bp = 0 (3 .3c)  

p4- ( I  + G / 2 ) p ’ +  Q / 4  = 0 .  ( 3 . 4 )  

where f ,  ’7 are the roots of the characteristic equation 

Here Q is the value of the Casimir operator. The general expression for the Casimir 
operator (which commutes with all generators K., of algebra ( 2 . 6 ) )  is 

Q = - 2 ( K : K , , +  K,>Kf )+  K z + 4 K : - 4 K : + 2 G K , ,  ( 3 . 5 )  

Q = - 2 a 2 ( m 2 + 2 p ) / E .  (3 .6)  

and, taking the realization ( 2 . 5 ) ,  it has the value 

From ( 3 . 4 )  and ( 3 . 6 )  we obtain 

c2 = m 2  + 2$ = M’ ’ 7 ’ = - a ’ / 2 E .  ( 3 . 7 )  

The considered representation must he finite dimensional, being the space of states 
belonging to the same value of energy. The conditions for this at = a, = 0, together 
with a;>O, is fulfilled only if 

I c I ~ P ~ l d -  1 0.8)  
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and the dimension of the representation is equal to 

Ya I Granovskii er a /  

1~1-151= N =  1 , 2 , 3 , .  . . 
From (3.9) it follows that the energy spectrum is 

E = - a ' / 2 ( N + M ) 2 .  

(3.9) 

(3.10) 

As E does not depend on p ,  all states with different values of p are degenerate. The 
degree of degeneration is equal to 2 N for m # 0 and N for m = 0. 

If p = 0 (Coulomb case) then additional degeneration arises: E depends only on 
the principal quantum number n = N + l m /  and the degree of degeneration turns out 
to be 

11-1 

s = 2  I: N + n = n * .  (3.11) 
I 

The reason for this degeneration is the appearance of new integrals L, ,  L, because of 
spherical symmetry taking place in this case. 

In 'a similar manner one can diagonalize the operator K , :  

Kipp, =/WP, (3.12) 

K o ~ s  = d.y+,ps+i+dspp,-, +hsp.s. (3.13) 

Along with similar procedures one obtains 

FV = 2 s  h,  = ( G  - 8s')/4 

where the roots s, are linear combinations of 5, q > 0: 

SI = ( I + v  - 5 ) / 2  

s3 = ( 1  ~ 5 - 7)/2 
S" = ( 1  + 5- 7 ) / 2  

$2 = ( 1  + 5 +  7 ) / 2  

S"< s s  s, - 1. 

The definition region of s is 

(3.15) 

The 'length' of this interval s, - so  is the same as for p :  s, -s,,= N. I t  means that the 
dimension of the {p\} basis coincides with the dimension of the {*o) one. 

4. Overlap functions and Hahn polynomials 

The operator AT for the Coulomb problem is known to bediagonalized in parabolic 
coordinates. A similar property is true for the operator A, = K ,  in the case of the 
Hartmann potential [3]. Our treatment expressed by formulae (3.12)-(3.14) represents 
a purely algebraic interpretation of this property. By means of this algebra we can 
(without any concrete realization of operators) obtain overlap functions (p\l$,,) = ( S I P )  
between two bases-spherical and parabolic. 

It is our purpose in this section to derive these overlap functions in terms of the 
so-called Hahn polynomials [9]. Note that for the Coulomb problem the overlap 
functions coincide with ccc. The latter is known to be expressed in terms of Hahn 
polynomials with integer parameters [lo]. 
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Let us extract the 'vacuum amplitude' $ds) from the matrix elements 

n = p - p o  = 0 ,  1 , 2 , .  . . (slP)=(slPo)Pn(s) = $O(S)P"(S) (4.1) 
where p o =  5 is a minimal value of p and by P,,(s) we denote some function to be 
established. 

Proceeding from the equation 

(~IKK,IP)  = ~ s ( s I P )  (4.2) 

A"+,P"+,(s)+A.P,~,is) = 2sPH(s) (4.3) 

A: = [ ( n + ( ) ' - c ' ] [ ~ ~ - ( n  + ()']/[4(n +e)'- 1 I. (4.4) 

1 and A"= 0) uniquely 
determines P#(s) as the set of polynomials of degree n from argument s. For example, 

one  can obtain from (3.2) the recurrent relation for P(s): 

where 

The recurrent relation (4.3) (together with conditions Po(s) 

P , ( s )  =2s/A,  =2sJ(25+3) / (7  +(+ I)(? -5-  1). 

The polynomials are mutually orthogonal, 

6," = I h) = 1 ( m Is) (SI n) 

= 1 w ( s  ) p, (s) P" (s ) (4.5) 

where the weight function w ( s )  IS the absolute square of the 'vacuum amplitude' 

w i s ) =  I(slPo)12=l$"(s)21. (4.6) 

One can find the expression for w ( s ) .  Indeed, from (3.1) and (3.13), 

(S I&  P O )  = P O ( P O +  1 )(SI P O )  = d,+i(s + 11 PU)+ d ( s  - 11 PO) + k ( s /  P O )  

(SI K,lpo) 

Taking into account that 

(4.7a) 

(4.76) 2( PO+ l)A , ( S I  PO+ 1)  2d,+,(s + 1 I ~ a ) - 2 d , ( s  - 11 PJ. 

Ai(slpo+ 1)  = ~ ~ ( s I P o )  
follows from (4.3) we have, from (4.7), 

This formula may be considered as the recurrent equation for w ( s ) .  Its solution within 
normalization is 

W(S)=r(S+i -s,)r(s+i -s3) /r(~+i  -s<,)r(s+i -sz). (4.9) 
It is well known that the weight function uniquely determines the system of 

orthogonal polynomials. We can compare w ( s )  with the weight function of Hahn 
polynomials H,(x; U, p, N )  [91: 

w , , ( ~ )  = r ( x +  a + i ) r ( N  - x + p ) / r ( x +  1)r( N - x )  (4.10) 

They are identical if s=s,+x, a=/3=c,  N = v - ( .  

O S x S N - I .  
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Thus, we have 

P,(s) = H , ( x ;  &(, N ) =  C, ,F,(-n, -x, n+1+2(;  ( + I ,  1 - N i l )  

within the normalization factor, which is not relevant for our purposes. 
Now for the overlap function we obtain the following result: 

(4.11) 

(&)= $ " ( S ) f f p - & - s " ) .  (4.12) 

The expression for (qyl+,,) in terms of 3F2(I) has been obtained in [4] by direct 
computation. However, the authors of [4] have not noticed the mere coincidence of 
their result with the Hahn polynomial. Our purely algebraic approach gives the reason 
for the appearance of this: it is the representation of 'hidden' quadratic symmetry of 
the Hartmann potential. 

In conclusion let us make some remarks. 
The algebra with commutation relations (2.6) is a special case of the complete 

Hahn algebra QH(3) (see [6,7]): 

[KO, K21=21fG, K,I+  CiK,+ DKo+ G, 

[KZ, K , ] = 2 K : +  C,,K,+DK,+G, 

(4.13) 

with arbitrary real parameters CO, C,,  0, CO, G ,  (here the considered case corresponds 
to C,=D=G,=O) .  

For our value of parameter CO = 4 the spectrum of K ,  is discrete and as a result 
we obtained the Hahn polynomials of discrete argument-ccc, extended to real values 
of their arguments. One can say that algebra (4.13) forms a foundation for the usual 
Clebsch-Gordan scheme in the theory of angular momentum. 

For C,<O the spectrum of K ,  is continuous and we would be dealing with Hahn 
polynomials of continuous argument. These polynomials are so-called Lorentz poly- 
nomials considered earlier in [ 111. 

Finally, if C,=O we obtain the quadratic Jacobi algebra QJ(3), which is the 
dynamical symmetry algebra for exactly solvable one-dimensional potentials [12]. 

5. Conclusion 

It was the main purpose of this paper to construct the algebra corresponding to the 
symmetry of the Hartmann potential. We hope that the reader has been convinced 
that the somewhat unusual object-quadratic algebra QH(3)-allows one to present 
a completely algebraic solution of the problem. I t  must be noted that the authors of 
[3] have proposed an idea closely related to our approach. However, due to their 
paradigm (namely, the search for an algebra with linear commutators like Virasoro or 
Kac-Moody algebras) they have not noticed that the right-hand sides of the commuta- 
tion relations are quadratic combinations of the initial operators, i.e. are closed in the 
frame of quadratic algebra. 

We hope this simple solution of the symmetry problem will draw the attention of 
physicists to the quadratic algebras which have been successfully used in statistical 
mechanics [SI,  the theory of 6-j  symbols [7], exactly solvable potentials in quantum 
mechanics [I21 and in other areas. 
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There is one interesting and as yet unresolved problem: what group corresponds 
to the quadratic dynamical algebra? In the Coulomb problem the O(4) Lie group is 
the corresponding group acting on the four-dimensional sphere in momentum space 
[13]. However, we have not found any similar group in the case of the Hartmann 
potential. 

frppeii;ix ;. r, 

Let $,, be the eigenvalue basis for K O :  

.̂  m - 3  IL. .-.. ~~~~~~. e ~ ~~~ nun tu iinu ~ i i e  specrrum 01 generaiors 

K d P  = K 1 $ p = 2  A,,$,, 
9 

Substituting (Al)  into the (2.6b) one obtains 

Apq[(Ap -A , )2 -2 (A,+A, ) J  =O. 

If q = p  we have 

A, = 0. (A31 

If q f p  there exists only two different values of q (with p fixed) as the roots of 

So the matrix A,, is three diagonal and we can choose 
quadratic equation (A2). 

A,, = a,+l%-,  + (A4) 

in accordance with (3.2) (b ,  = A , ,  = 0). 
The expression for the spectrum A, is obtained from (A2) if q = p i  1: 

.hp = p ( p  + 1) (A51 

with an undetermined initial value po of p, 

p = P a + n  n=O,1 ,2  , . . . .  
Notice that the quadratic spectrum (AS) is due to bilinearity of commutation 

reiaiion (2.6b).  

Appendix 2. How to calculate the matrix element a, 
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On the other hand, from the expression for the Casimir operator (3 .5)  we have 

Q = ( p l K i - 2 ( K o K : +  K ~ K ~ ) + ~ G K , + ~ K ~ - ~ K : I P )  

=2Gh, -4h: -4[p(2p +3)a;+,  + ( p +  1)(2p-  I)ai]. (A91 

Combining (A8) and (A9), one obtains 

In a similar way one can obtain the formulae (3.13) and (3.14) for the basis q%. 
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